Chondroitin sulfate and neuronal disorders.
نویسندگان
چکیده
The brain extracellular matrix (ECM) is involved in several aspects of neuronal development, plasticity, and pathophysiology. Chondroitin sulfate proteoglycans (CSPGs), consisting of core proteins with covalently attached chondroitin sulfate (CS) chains, are essential components of the brain ECM. During late postnatal development, CSPGs condense around parvalbumin-expressing inhibitory neurons (PV-cells) and form lattice-like ECM structures called perineuronal nets (PNNs). Enzymatic or genetic manipulation of PNNs reactivates neuronal plasticity in the adult brain, probably by resetting the excitatory/inhibitory balance in neural networks. Recent studies have indicated that PNNs control PV-cell function by enhancing the accumulation of specific proteins at the cell surface and/or acting as neuroprotective shields against oxidative stress. Since dysfunction of PV-cells and remodeling of CSPGs are commonly observed in several disorders, including schizophrenia, Costello syndrome, Alzheimer's disease, and epilepsy, modulation of PV-cell function by CSPGs may provide a novel strategy for these neuronal disorders. Here we review the potential roles of CSPGs as therapeutic targets for neuronal disorders, with particular focus on structural changes of CS chains under pathological conditions.
منابع مشابه
Effect of Chondroitinase ABC Enzyme on Glial Fibrillary Acidic Protein, Chondroitin Sulfated Proteoglycans and Chondroitin 4-Sulfate Levels in an Animal Model of Spinal Cord Injury
Background: Following spinal cord injury, reactive astrocytes upregulate chondroitin sulfate proteoglycans (CSPGs) which act as a barrier to neuronal repair and regeneration. Therefore, enzymatic digestion of CSPGs by chondroitinase ABC (cABC) is a key strategy in the treatment of spinal cord injury. Furthermore, cABC has been shown to attenuate post spinal cord injury inflamma...
متن کاملProteoglycans and neuronal migration in the cerebral cortex during development and disease
Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regu...
متن کاملThyroid hormone treated astrocytes induce maturation of cerebral cortical neurons through modulation of proteoglycan levels
Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within these signals, thyroid hormones (T3 and T4) play crucial role in several steps of brain morphogenesis including proliferation of progenitor cells, neuronal differentiation, maturation, migration, and synapse formati...
متن کاملA chondroitin sulfate small molecule that stimulates neuronal growth.
Chondroitin sulfate glycosaminoglycans are sulfated polysaccharides involved in cell division, neuronal development, and spinal cord injury. Here, we report the synthesis and identification of a chondroitin sulfate tetrasaccharide that stimulates the growth and differentiation of neurons. These studies represent the first, direct investigations into the structure-activity relationships of chond...
متن کاملInvolvement of Receptor-like Protein Tyrosine Phosphatase ζ/RPTPβ and Its Ligand Pleiotrophin/Heparin-binding Growth-associated Molecule (HB-GAM) in Neuronal Migration
Pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) is a specific ligand of protein tyrosine phosphatase zeta (PTPzeta)/receptor-like protein tyrosine phosphatase beta (RPTPbeta) expressed in the brain as a chondroitin sulfate proteoglycan. Pleiotrophin and PTPzeta isoforms are localized along the radial glial fibers, a scaffold for neuronal migration, suggesting that these molecul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in bioscience
دوره 21 شماره
صفحات -
تاریخ انتشار 2016